CSCD358 Final Project Report

1. Team members

e Phong (Paul) Ngoc Hoang Nguyen, 1010579161
e Ning Qi (Paul) Sun, 1010294156
e Jeremy Janella, 1010412215

2. Project Description

We implemented a layer 4 load balancer on the two-arm architecture that can
proxy TCP traffic that uses dynamically updating based on the resource load
algorithm described in this paper. The load balancer is deployed between
two separate networks in the Docker environment, forwarding traffic from
client network to server network. On the server side, it runs software that
monitors server’s resources (effective network bandwidth, 10, memory, CPU
utilization rate) and sends an update to the load balancer every 10 seconds
for the algorithm to adjust load for each server. The load balancer is also
configurable through a YAML file; it lets system administrators tune
behavior without changing the code by selecting algorithms and per-rule
parameters at both startup and during runtime.

We also implemented other commonly known algorithms like round-robin or
IP hashing to benchmark and compare the efficiency of the Dynamic
Adjustment of Weight algorithm.

Summary of project features:
1. Load Balancing Algorithms:
Round-robin, source IP hashing, and adaptive weight.
2. Health Monitoring:
Real-time backend health updates and integration with load balancers.
3. Dynamic Configuration:
Hot-reloading of configuration without restarting the application.
4. TCP Proxying:
Efficient and concurrent proxying of client connections to backends.
5. Extensibility:

https://www.wcse.org/WCSE_2018/W110.pdf

Pluggable design for creating custom routing rules: create different
cluster servers, priority management, adding new or tune parameters
of existing load balancing algorithms.

Reliability:

Server attempts to reconnect to the load balancer when connection is
lost. When the server terminates the connection, the load balancer
handles it gracefully.

Testing Infrastructure:

Simulated load balancer, client and backend servers for integration
testing.

3. Project goals

The goal of this project is to implement and examine the efficiency of the
algorithm described in the paper, as well as implementing a load balancer
that supports multiple load balancing algorithms. We picked Rust as the

language for the load balancer (and the server heartbeat) because we wanted

to experiment with the expressiveness it provides in building abstractions,
the memory safety, and the powerful tools it provides for concurrent

programming.

Project contribution

Phong (Paul) Ngoc Hoang Nguyen:

Set up the Docker images and Docker network topology for clients,
load balancers and servers

Implemented resource monitoring (health check) software running on
the server, and load balancer

Implemented and write unit tests for Dynamic Adjustment of Weight
and IP hashing load balancing algorithm

Contributed to process and handle server metrics on the load balancer,
set up iperf server to measure maximum network bandwidth

Ning Qi (Paul) Sun

Implemented matching and routing rules for incoming connections:

- Inbound connections get grouped by ports, and for each port,
there is a separate routing table that performs longest prefix
match to find a matching set of backends and algorithm to use.

- Implemented connection proxying logic

- Mostly metadata and logging.

- Implemented config module for the load balancer:

- Generates data structures used for load balancing: initializes
Balancer structs, creates RoutingTables

- Implemented round robin algorithm for load balancing
Jeremy Janella
- Research proxy layer implementations

- developed experimental data link, network, transport, and

application layer proxies
- Implemented async parallel tcp-proxy using tokio
- Review and implementation of load balancer test cases

5. Implementation details

We made this program in Rust and used Docker network for serving the
infrastructure.

Folder structure of src:

e main.rs - Entry point of load balancer. Reads the config file initially,
sets up the file change watcher to auto reload config later. Starts the
listeners for incoming connections, and performs the rule matching
logic.

e balancer module - Defines some load balancer algorithms

o balancer/mod.rs - Defines the Balancer trait that all the balance
structs must implement (for choose backend() method)

o balancer/adaptive weight.rs - Implement algorithm on the
mentioned paper (see project description) for choose backend()
on Balancer trait, as well as defining a structure to keep track of
required coefficient and weights for the algorithm + unit tests.

o balancer/ip_hashing.rs - Implement IP hashing algorithm for
choose backend() method on Balancer trait.

o balancer/round_robin.rs - Implement round-robin algorithm for
choose backend() method on Balance trait.

e backend module - Management and maintenance of backend pools

o backend/mod.rs - Defines Backend structure which represents a
single backend from the config file, and BackendPool structure
which represents a cluster of Backends.

o health.rs - A structure to keep track and update of server’s
physical health statistics, listen to newly updated server metrics
and start an independent iperf server.

e config module - Configuration of the load balancer

o config/mod.rs - Defines structs for the YAML configuration

o loader.rs - Takes a parsed configuration, creates the rules and
routing tables

e proxy module - Proxy logic for different protocols (only TCP at the
moment)

o proxy/mod.rs - Defines metadata and logging struct
ConnectionContext.

o tcp.rs - Connection proxying for TCP connections.

Routing details:
When a TCP connection is made to us, it will first be accepted by a
port listener. This is because a TcpListener can only bind to one port.

Once we have it, we consult the RoutingTable for that port. In here we
have a bunch of IP address ranges in CIDR notation, and these are
stored as a pair with a Balancer. We perform longest prefix matching
to find which one we use.

The Balancer struct has a method choose backend() that we then call
to pick a good backend, and then we proxy the connection between
the client and the chosen backend.

(Balancer is a struct, because it needs information about what set of
Backends its allowed to load balance around, so most of the

algorithms store a BackendPool struct internally, which is generated
by the config).

Config module:
The config is two parts: parsing the definitions in the YAML file, and
then actually turning it into data structures the load balancer core is
able to use.

Parsing is done by defining a couple of structs with fields
corresponding to what the fields in the configuration file should be.
Then, we use serde crate to parse the configuration file and fill out our
configuration struct for us. (I cannot claim any credit here, but the
way it works is very smart: it uses procedural macros to inspect the
fields in the structure definition, and automatically generates the code
that reads and parses from the YAML file. So as long as you write
your struct definition, you can parse the YAML easily).

Once we have the parsed file, we need to actually turn it into data that
the load balancer core can use to do its job.

Recall the structure of the rules: we have a set of ip/subnet:port as the
clients (we need to match a client with one of these). Then we have
the target, aka the set of backends that these clients are allowed to use.
But also recall the load balancer core structure: We have concurrently
running threads, one for each port that we need to listen on.

So we first group up these rules by client port (if a rule has multiple
different ports for clients, we just split it into two rules). Then for each
port, we read all the rules, and add the CIDR IP address + the
requested Balancer, into a RoutingTable. We put this port +
RoutingTable into a hashmap, and once we're done with all of them,
we return this to main.rs

Though handled by main.rs, the config auto reload is not too special, it
just spawns a new thread that waits for the file to change, and then

when it does, we need to redo this portion. To achieve no downtime
and no dropped / killed connections during the reload, we need a way
to give the listener threads a new routing table. We achieved this with
a MPSC channel, and modified the accept() loop to also monitor this
channel (We can use tokio's select! macro, which works similarly to
select() on Linux, to be able to wait for any of these two possible
events to happen, in any order and frequency).

Backend module:
A backend is a single endpoint. Put simply, each IP+port from the
backends list in the config will become a Backend struct.

A BackendPool is a vector of shared Backends, because Backend has
a field active_connections, meaning it could belong to multiple rules

(and hence multiple Balancer structs) and ports (entirely different
threads).

The module also manages backend health metrics through the
ServerMetrics struct, which tracks resource usage (CPU, memory,
network, and I/O). These metrics are updated dynamically via the
start_healthcheck listener function, which listens for health updates
from backends, processes incoming JSON metrics, and updates the
shared ServerMetrics for each backend using thread-safe
Arc<RwLock>. This integration ensures that load balancers have
real-time data to make informed decisions.

Balancer module:

The balancer module is the core of the load balancing logic, defining
the Balancer trait and implementing multiple load balancing algorithms. The
Balancer trait provides a unified interface with the choose backend method,
which selects an appropriate backend for a given connection. Each algorithm
is implemented as a struct that adheres to this trait, allowing for pluggable
and extensible load balancing strategies. The module includes the following
algorithms:

1. Round Robin (round_robin.rs):
Implements a simple round-robin strategy, cycling through backends
in order. It maintains an index to track the next backend to use, ensuring
even distribution of connections.

2. Source IP Hashing (ip_hashing.rs):
Uses a hash of the client's source IP to consistently route connections
from the same client to the same backend. This ensures session stickiness
and 1s useful for stateful applications.

3. Adaptive Weight (adaptive weight.rs):

A more advanced algorithm that uses backend health metrics (CPU,
memory, network, and I/O) to calculate weights dynamically. It adjusts
weights based on resource availability and selects backends accordingly. The
implementation includes partial support for the W110 paper's algorithm,
with features like threshold-based selection and randomized adjustments.

The balancer module is designed to work seamlessly with the backend
module, leveraging shared Backend instances and real-time ServerMetrics
for decision-making. Each algorithm is encapsulated in its own file, ensuring
modularity and ease of extension. The mod.rs file acts as the entry point,
exposing the Balancer trait and the implemented algorithms. This design
allows the system to support diverse balancing strategies while maintaining
a consistent interface.

. Documentation

The load balancer is configured with a YAML file, and has the ability to
automatically reload when the file is edited, allowing you to change rules
without dropping any connections.

The configuration file consists of:
e Defining your health response address (IP + port)
e Defining your iperf server address (IP + port)

e A list of backends, which are the server IP + port that you will be load
balancing with.

e A list of clusters, which each are a group alias for a set of backends.

e A list of rules, which consists of :

o Clients: One or more IP address ranges (written in CIDR
notation) + port number, which we will use to match an
incoming client with.

o Targets: One or more clusters of backends.

Strategy: A chosen load balancing algorithm to use. When we
match an inbound connection to this rule, we use the algorithm
to match the connection to one of the target backends.
m Depending on the strategy, there may be more
configuration, like the weights for the adaptive algorithm.

Here is a sample of the configuration:

healthcheck addr: "10.0.1.0:9000"
iperf_addr: "10.0.1.0:5201"

backends:
- id: "srv-1"
ip: "10.0.1.1:8081"

- id: "srv-2"
ip: "10.0.1.2:8082"

- id: "srv-3"
ip: "10.0.1.3:8083"

- _'Ld: llsrv_4||
ip: "10.0.1.4:8084"

clusters:
main-api:
- "srv-1"
- "srv-2"
priority-api:
- "srv-3"
- "srv-4"

rules:

- clients:
- "0.0.0.0/0:80"
targets:
- "main-api”
strategy:

type: "RoundRobin"

- clients:
- "10.0.0.0/24:80"
- "10.0.0.0/24:8080"
- "10.0.1.0/24:8080"
targets:
- "main-api”
- "priority-api”
strategy:
type: "Adaptive"
coefficients: [1.5, 1.0, 0.5, 0.1]
alpha: 0.75

The internal network containing the servers are set to be IPs in 10.0.1.0/24.
The backend servers will periodically send us information about their
resources. We define two clusters, a main cluster and a priority cluster.

For our clients, we have two rules: Everyone, on port 80 only, has access to
the main cluster, and are served using the round robin balancer. For anyone
on 10.0.0.0/24 specifically, on port 80 and additionally 8080, as well as
anyone on 10.0.1.0/24 but only port 8080, they get access to all 4 backends
in the main and priority cluster. Their load balancing will use the adaptive
load balancing algorithm instead of round robin.

Internally, clients are matched with rules by checking the ports, and then
using longest prefix matching. So although the first rule does cover all port
80 traffic, since the second rule is more specific, it will be the one that
clients on 10.0.0.0/24:80 get matched to.

7. Conclusion and lesson learn

e [earning Rust is a challenge because it offers a new mindset of
writing code. The compiler’s strict rules around borrowing, error
handling, and concurrency can be overwhelming but it will teach us
how to write safer and more deliberate code (Anecdote from writing
this project: If the code managed to compile, there's a good chance it
is correct already. Such are the benefits of an expressive language,
with a good type system). Additionally, Rust offers a variety of tools
to manage concurrency, abstraction and crates (libraries) used for
different purposes like asynchronous network socket, extracting
system information, serializing and deserializing data in different
formats like JSON, YAML easily. This makes programming
experience with Rust both painful and less painful at the same time.

e Building a network environment with Docker is a fun experience as
Docker offers various options to configure your network, hosts, and
even the host’s physical configuration! Docker is also convenient as it
is easy to deploy, make changes, share the environment, and ensures
the software run does not produce unexpected errors when running on
the other machine.

e Deciding on which layer to implement the proxy was a trade-off
between speed, complexity, and being able to support different
features. Implementing a proxy at the data link layer would offer the
fastest performance using cut-through forwarding, the performance
gain is marginal unless implemented in dedicated hardware, and it still
doesn't solve the problem of routing sessions. A network layer
implementation, where we would modify IP packet destination
headers, introduces the significant complexity of manually tracking
user sessions to ensure persistence (all packets from one user go to the
same server). Therefore, implementing the load balancer at the
transport layer or application layer provides the best balance. The TCP
layer already handles sessions, making it suitable for forwarding. The
application layer offer would have the server relaying HTTP requests,
however would limit our program to only working with HTTP. It was
decided to use TCP which supports a much broader range of protocols

which are built on it (including HTTP), allowing more versatility of
the balancer.

	CSCD58 Final Project Report
	1.​Team members
	2.​Project Description
	3.​Project goals
	4.​Project contribution
	5.​Implementation details
	6.​Documentation
	7.​Conclusion and lesson learn

